classic-level

An abstract-level database backed by LevelDB. The successor to leveldown with builtin encodings, sublevels, events, promises and support of Uint8Array. If you are upgrading please see UPGRADING.md.

📌 Which module should I use? What is abstract-level? Head over to the FAQ.

level badge
npm
Node version
Test
Coverage
Standard
Common Changelog
Donate

Table of Contents

Click to expand

Usage

const { ClassicLevel } = require('classic-level')

// Create a database
const db = new ClassicLevel('./db', { valueEncoding: 'json' })

// Add an entry with key 'a' and value 1
await db.put('a', 1)

// Add multiple entries
await db.batch([{ type: 'put', key: 'b', value: 2 }])

// Get value of key 'a': 1
const value = await db.get('a')

// Iterate entries with keys that are greater than 'a'
for await (const [key, value] of db.iterator({ gt: 'a' })) {
  console.log(value) // 2
}

All asynchronous methods also support callbacks.

Callback example

db.put('example', { hello: 'world' }, (err) => {
  if (err) throw err

  db.get('example', (err, value) => {
    if (err) throw err
    console.log(value) // { hello: 'world' }
  })
})

Usage from TypeScript requires generic type parameters.

TypeScript example

// Specify types of keys and values (any, in the case of json).
// The generic type parameters default to ClassicLevel<string, string>.
const db = new ClassicLevel<string, any>('./db', { valueEncoding: 'json' })

// All relevant methods then use those types
await db.put('a', { x: 123 })

// Specify different types when overriding encoding per operation
await db.get<string, string>('a', { valueEncoding: 'utf8' })

// Though in some cases TypeScript can infer them
await db.get('a', { valueEncoding: db.valueEncoding('utf8') })

// It works the same for sublevels
const abc = db.sublevel('abc')
const xyz = db.sublevel<string, any>('xyz', { valueEncoding: 'json' })

Supported Platforms

We aim to support at least Active LTS and Current Node.js releases, Electron 5.0.0, as well as any future Node.js and Electron releases thanks to N-API.

The classic-level npm package ships with prebuilt binaries for popular 64-bit platforms as well as ARM, M1, Android, Alpine (musl), Windows 32-bit, Linux flavors with an old glibc (Debian 8, Ubuntu 14.04, RHEL 7, CentOS 7) and is known to work on:

  • Linux, including ARM platforms such as Raspberry Pi and Kindle
  • Mac OS (10.7 and later)
  • Windows
  • FreeBSD

When installing classic-level, node-gyp-build will check if a compatible binary exists and fallback to compiling from source if it doesn’t. In that case you’ll need a valid node-gyp installation.

If you don’t want to use the prebuilt binary for the platform you are installing on, specify the --build-from-source flag when you install. One of:

npm install --build-from-source
npm install classic-level --build-from-source

If you are working on classic-level itself and want to recompile the C++ code, run npm run rebuild.

Note: the Android prebuilds are made for and built against Node.js core rather than the nodejs-mobile fork.

API

The API of classic-level follows that of abstract-level with a few additional options and methods specific to LevelDB. The documentation below covers it all except for Encodings, Events and Errors which are exclusively documented in abstract-level.

An abstract-level and thus classic-level database is at its core a key-value database. A key-value pair is referred to as an entry here and typically returned as an array, comparable to Object.entries().

db = new ClassicLevel(location[, options])

Create a database or open an existing database. The location argument must be a directory path (relative or absolute) where LevelDB will store its files. The optional options object may contain:

  • keyEncoding (string or object, default 'utf8'): encoding to use for keys
  • valueEncoding (string or object, default 'utf8'): encoding to use for values.

See Encodings for a full description of these options. Other options (except passive) are forwarded to db.open() which is automatically called in a next tick after the constructor returns. Any read & write operations are queued internally until the database has finished opening. If opening fails, those queued operations will yield errors.

db.location

Read-only getter that returns the location string that was passed to the constructor (as-is).

db.status

Read-only getter that returns a string reflecting the current state of the database:

  • 'opening' – waiting for the database to be opened
  • 'open' – successfully opened the database
  • 'closing' – waiting for the database to be closed
  • 'closed' – successfully closed the database.

db.open([options][, callback])

Open the database. The callback function will be called with no arguments when successfully opened, or with a single error argument if opening failed. If no callback is provided, a promise is returned. Options passed to open() take precedence over options passed to the database constructor.

The optional options object may contain:

  • createIfMissing (boolean, default: true): If true, create an empty database if one doesn’t already exist. If false and the database doesn’t exist, opening will fail.
  • errorIfExists (boolean, default: false): If true and the database already exists, opening will fail.
  • passive (boolean, default: false): Wait for, but do not initiate, opening of the database.

For advanced performance tuning, the options object may also contain the following. Modify these options only if you can prove actual benefit for your particular application.

Click to expand
  • compression (boolean, default: true): Unless set to false, all compressible data will be run through the Snappy compression algorithm before being stored. Snappy is very fast so leave this on unless you have good reason to turn it off.

  • cacheSize (number, default: 8 * 1024 * 1024): The size (in bytes) of the in-memory LRU cache with frequently used uncompressed block contents.

  • writeBufferSize (number, default: 4 * 1024 * 1024): The maximum size (in bytes) of the log (in memory and stored in the .log file on disk). Beyond this size, LevelDB will convert the log data to the first level of sorted table files. From LevelDB documentation:

    Larger values increase performance, especially during bulk loads. Up to two write buffers may be held in memory at the same time, so you may wish to adjust this parameter to control memory usage. Also, a larger write buffer will result in a longer recovery time the next time the database is opened.

  • blockSize (number, default: 4096): The approximate size of the blocks that make up the table files. The size relates to uncompressed data (hence “approximate”). Blocks are indexed in the table file and entry-lookups involve reading an entire block and parsing to discover the required entry.

  • maxOpenFiles (number, default: 1000): The maximum number of files that LevelDB is allowed to have open at a time. If your database is likely to have a large working set, you may increase this value to prevent file descriptor churn. To calculate the number of files required for your working set, divide your total data size by maxFileSize.

  • blockRestartInterval (number, default: 16): The number of entries before restarting the “delta encoding” of keys within blocks. Each “restart” point stores the full key for the entry, between restarts, the common prefix of the keys for those entries is omitted. Restarts are similar to the concept of keyframes in video encoding and are used to minimise the amount of space required to store keys. This is particularly helpful when using deep namespacing / prefixing in your keys.

  • maxFileSize (number, default: 2 * 1024 * 1024): The maximum amount of bytes to write to a file before switching to a new one. From LevelDB documentation:

    If your filesystem is more efficient with larger files, you could consider increasing the value. The downside will be longer compactions and hence longer latency / performance hiccups. Another reason to increase this parameter might be when you are initially populating a large database.

It’s generally not necessary to call open() because it’s automatically called by the database constructor. It may however be useful to capture an error from failure to open, that would otherwise not surface until another method like db.get() is called. It’s also possible to reopen the database after it has been closed with close(). Once open() has then been called, any read & write operations will again be queued internally until opening has finished.

The open() and close() methods are idempotent. If the database is already open, the callback will be called in a next tick. If opening is already in progress, the callback will be called when that has finished. If closing is in progress, the database will be reopened once closing has finished. Likewise, if close() is called after open(), the database will be closed once opening has finished and the prior open() call will receive an error.

db.close([callback])

Close the database. The callback function will be called with no arguments if closing succeeded or with a single error argument if closing failed. If no callback is provided, a promise is returned.

A database has associated resources like file handles and locks. When the database is no longer needed (for the remainder of a program) it’s recommended to call db.close() to free up resources. The underlying LevelDB store cannot be opened by multiple classic-level instances or processes simultaneously.

After db.close() has been called, no further read & write operations are allowed unless and until db.open() is called again. For example, db.get(key) will yield an error with code LEVEL_DATABASE_NOT_OPEN. Any unclosed iterators or chained batches will be closed by db.close() and can then no longer be used even when db.open() is called again.

A classic-level database waits for any pending operations to finish before closing. For example:

db.put('key', 'value', function (err) {
  // This happens first
})

db.close(function (err) {
  // This happens second
})

db.supports

A manifest describing the features supported by this database. Might be used like so:

if (!db.supports.permanence) {
  throw new Error('Persistent storage is required')
}

db.get(key[, options][, callback])

Get a value from the database by key. The optional options object may contain:

  • keyEncoding: custom key encoding for this operation, used to encode the key.
  • valueEncoding: custom value encoding for this operation, used to decode the value.
  • fillCache (boolean, default: true): Unless set to false, LevelDB will fill its in-memory LRU cache with data that was read.

The callback function will be called with an error if the operation failed. If the key was not found, the error will have code LEVEL_NOT_FOUND. If successful the first argument will be null and the second argument will be the value. If no callback is provided, a promise is returned.

A classic-level database supports snapshots (as indicated by db.supports.snapshots) which means db.get() should read from a snapshot of the database, created at the time db.get() was called. This means it should not see the data of simultaneous write operations. However, there’s currently a small delay before the snapshot is created.

db.getMany(keys[, options][, callback])

Get multiple values from the database by an array of keys. The optional options object may contain:

  • keyEncoding: custom key encoding for this operation, used to encode the keys.
  • valueEncoding: custom value encoding for this operation, used to decode values.
  • fillCache: same as described for db.get().

The callback function will be called with an error if the operation failed. If successful the first argument will be null and the second argument will be an array of values with the same order as keys. If a key was not found, the relevant value will be undefined. If no callback is provided, a promise is returned.

A classic-level database supports snapshots (as indicated by db.supports.snapshots) which means db.getMany() should read from a snapshot of the database, created at the time db.getMany() was called. This means it should not see the data of simultaneous write operations. However, there’s currently a small delay before the snapshot is created.

db.put(key, value[, options][, callback])

Add a new entry or overwrite an existing entry. The optional options object may contain:

  • keyEncoding: custom key encoding for this operation, used to encode the key.
  • valueEncoding: custom value encoding for this operation, used to encode the value.
  • sync (boolean, default: false): if set to true, LevelDB will perform a synchronous write of the data although the operation will be asynchronous as far as Node.js or Electron is concerned. Normally, LevelDB passes the data to the operating system for writing and returns immediately. In contrast, a synchronous write will use fsync() or equivalent, so the put() call will not complete until the data is actually on disk. Synchronous writes are significantly slower than asynchronous writes.

The callback function will be called with no arguments if the operation was successful or with an error if it failed. If no callback is provided, a promise is returned.

db.del(key[, options][, callback])

Delete an entry by key. The optional options object may contain:

  • keyEncoding: custom key encoding for this operation, used to encode the key.
  • sync (boolean, default: false): same as described for db.put()

The callback function will be called with no arguments if the operation was successful or with an error if it failed. If no callback is provided, a promise is returned.

db.batch(operations[, options][, callback])

Perform multiple put and/or del operations in bulk. The operations argument must be an array containing a list of operations to be executed sequentially, although as a whole they are performed as an atomic operation.

Each operation must be an object with at least a type property set to either 'put' or 'del'. If the type is 'put', the operation must have key and value properties. It may optionally have keyEncoding and / or valueEncoding properties to encode keys or values with a custom encoding for just that operation. If the type is 'del', the operation must have a key property and may optionally have a keyEncoding property.

An operation of either type may also have a sublevel property, to prefix the key of the operation with the prefix of that sublevel. This allows atomically committing data to multiple sublevels. Keys and values will be encoded by the sublevel, to the same effect as a sublevel.batch(..) call. In the following example, the first value will be encoded with 'json' rather than the default encoding of db:

const people = db.sublevel('people', { valueEncoding: 'json' })
const nameIndex = db.sublevel('names')

await db.batch([{
  type: 'put',
  sublevel: people,
  key: '123',
  value: {
    name: 'Alice'
  }
}, {
  type: 'put',
  sublevel: nameIndex,
  key: 'Alice',
  value: '123'
}])

The optional options object may contain:

  • keyEncoding: custom key encoding for this batch, used to encode keys.
  • valueEncoding: custom value encoding for this batch, used to encode values.
  • sync (boolean, default: false): same as described for db.put().

Encoding properties on individual operations take precedence. In the following example, the first value will be encoded with the 'utf8' encoding and the second with 'json'.

await db.batch([
  { type: 'put', key: 'a', value: 'foo' },
  { type: 'put', key: 'b', value: 123, valueEncoding: 'json' }
], { valueEncoding: 'utf8' })

The callback function will be called with no arguments if the batch was successful or with an error if it failed. If no callback is provided, a promise is returned.

db.batch()

Create a chainedBatch object, when batch() is called with zero arguments. A chained batch can be used to build and eventually commit an atomic batch of operations. Depending on how it’s used, it is possible to obtain greater performance with this form of batch().

iterator = db.iterator([options])

Create an iterator. The optional options object may contain the following range options to control the range of entries to be iterated:

  • gt (greater than) or gte (greater than or equal): define the lower bound of the range to be iterated. Only entries where the key is greater than (or equal to) this option will be included in the range. When reverse is true the order will be reversed, but the entries iterated will be the same.
  • lt (less than) or lte (less than or equal): define the higher bound of the range to be iterated. Only entries where the key is less than (or equal to) this option will be included in the range. When reverse is true the order will be reversed, but the entries iterated will be the same.
  • reverse (boolean, default: false): iterate entries in reverse order. Beware that a reverse seek can be slower than a forward seek.
  • limit (number, default: Infinity): limit the number of entries yielded. This number represents a maximum number of entries and will not be reached if the end of the range is reached first. A value of Infinity or -1 means there is no limit. When reverse is true the entries with the highest keys will be returned instead of the lowest keys.

The gte and lte range options take precedence over gt and lt respectively. If no range options are provided, the iterator will visit all entries of the database, starting at the lowest key and ending at the highest key (unless reverse is true). In addition to range options, the options object may contain:

  • keys (boolean, default: true): whether to return the key of each entry. If set to false, the iterator will yield keys that are undefined. Prefer to use db.keys() instead.
  • values (boolean, default: true): whether to return the value of each entry. If set to false, the iterator will yield values that are undefined. Prefer to use db.values() instead.
  • keyEncoding: custom key encoding for this iterator, used to encode range options, to encode seek() targets and to decode keys.
  • valueEncoding: custom value encoding for this iterator, used to decode values.
  • fillCache (boolean, default: false): If set to true, LevelDB will fill its in-memory LRU cache with data that was read.

📌 To instead consume data using Node.js streams, see level-read-stream.

keyIterator = db.keys([options])

Create a key iterator, having the same interface as db.iterator() except that it yields keys instead of entries. If only keys are needed, using db.keys() may increase performance because values won’t have to fetched, copied or decoded. Options are the same as for db.iterator() except that db.keys() does not take keys, values and valueEncoding options.

// Iterate lazily
for await (const key of db.keys({ gt: 'a' })) {
  console.log(key)
}

// Get all at once. Setting a limit is recommended.
const keys = await db.keys({ gt: 'a', limit: 10 }).all()

valueIterator = db.values([options])

Create a value iterator, having the same interface as db.iterator() except that it yields values instead of entries. If only values are needed, using db.values() may increase performance because keys won’t have to fetched, copied or decoded. Options are the same as for db.iterator() except that db.values() does not take keys and values options. Note that it does take a keyEncoding option, relevant for the encoding of range options.

// Iterate lazily
for await (const value of db.values({ gt: 'a' })) {
  console.log(value)
}

// Get all at once. Setting a limit is recommended.
const values = await db.values({ gt: 'a', limit: 10 }).all()

db.clear([options][, callback])

Delete all entries or a range. Not guaranteed to be atomic. Accepts the following options (with the same rules as on iterators):

  • gt (greater than) or gte (greater than or equal): define the lower bound of the range to be deleted. Only entries where the key is greater than (or equal to) this option will be included in the range. When reverse is true the order will be reversed, but the entries deleted will be the same.
  • lt (less than) or lte (less than or equal): define the higher bound of the range to be deleted. Only entries where the key is less than (or equal to) this option will be included in the range. When reverse is true the order will be reversed, but the entries deleted will be the same.
  • reverse (boolean, default: false): delete entries in reverse order. Only effective in combination with limit, to delete the last N entries.
  • limit (number, default: Infinity): limit the number of entries to be deleted. This number represents a maximum number of entries and will not be reached if the end of the range is reached first. A value of Infinity or -1 means there is no limit. When reverse is true the entries with the highest keys will be deleted instead of the lowest keys.
  • keyEncoding: custom key encoding for this operation, used to encode range options.

The gte and lte range options take precedence over gt and lt respectively. If no options are provided, all entries will be deleted. The callback function will be called with no arguments if the operation was successful or with an error if it failed. If no callback is provided, a promise is returned.

sublevel = db.sublevel(name[, options])

Create a sublevel that has the same interface as db (except for additional classic-level methods like db.approximateSize()) and prefixes the keys of operations before passing them on to db. The name argument is required and must be a string.

const example = db.sublevel('example')

await example.put('hello', 'world')
await db.put('a', '1')

// Prints ['hello', 'world']
for await (const [key, value] of example.iterator()) {
  console.log([key, value])
}

Sublevels effectively separate a database into sections. Think SQL tables, but evented, ranged and realtime! Each sublevel is an AbstractLevel instance with its own keyspace, events and encodings. For example, it’s possible to have one sublevel with 'buffer' keys and another with 'utf8' keys. The same goes for values. Like so:

db.sublevel('one', { valueEncoding: 'json' })
db.sublevel('two', { keyEncoding: 'buffer' })

An own keyspace means that sublevel.iterator() only includes entries of that sublevel, sublevel.clear() will only delete entries of that sublevel, and so forth. Range options get prefixed too.

Fully qualified keys (as seen from the parent database) take the form of prefix + key where prefix is separator + name + separator. If name is empty, the effective prefix is two separators. Sublevels can be nested: if db is itself a sublevel then the effective prefix is a combined prefix, e.g. '!one!!two!'. Note that a parent database will see its own keys as well as keys of any nested sublevels:

// Prints ['!example!hello', 'world'] and ['a', '1']
for await (const [key, value] of db.iterator()) {
  console.log([key, value])
}

📌 The key structure is equal to that of subleveldown which offered sublevels before they were built-in to abstract-level and thus classic-level. This means that an classic-level sublevel can read sublevels previously created with (and populated by) subleveldown.

Internally, sublevels operate on keys that are either a string, Buffer or Uint8Array, depending on choice of encoding. Which is to say: binary keys are fully supported. The name must however always be a string and can only contain ASCII characters.

The optional options object may contain:

  • separator (string, default: '!'): Character for separating sublevel names from user keys and each other. Must sort before characters used in name. An error will be thrown if that’s not the case.
  • keyEncoding (string or object, default 'utf8'): encoding to use for keys
  • valueEncoding (string or object, default 'utf8'): encoding to use for values.

The keyEncoding and valueEncoding options are forwarded to the AbstractLevel constructor and work the same, as if a new, separate database was created. They default to 'utf8' regardless of the encodings configured on db. Other options are forwarded too but classic-level has no relevant options at the time of writing. For example, setting the createIfMissing option will have no effect. Why is that?

Like regular databases, sublevels open themselves but they do not affect the state of the parent database. This means a sublevel can be individually closed and (re)opened. If the sublevel is created while the parent database is opening, it will wait for that to finish. If the parent database is closed, then opening the sublevel will fail and subsequent operations on the sublevel will yield errors with code LEVEL_DATABASE_NOT_OPEN.

db.approximateSize(start, end[, options][, callback])

Get the approximate number of bytes of file system space used by the range [start..end). The result might not include recently written data. The optional options object may contain:

  • keyEncoding: custom key encoding for this operation, used to encode start and end.

The callback function will be called with a single error argument if the operation failed. If successful the first argument will be null and the second argument will be the approximate size as a number. If no callback is provided, a promise is returned. This method is an additional method that is not part of the abstract-level interface.

db.compactRange(start, end[, options][, callback])

Manually trigger a database compaction in the range [start..end]. The optional options object may contain:

  • keyEncoding: custom key encoding for this operation, used to encode start and end.

The callback function will be called with no arguments if the operation was successful or with an error if it failed. If no callback is provided, a promise is returned. This method is an additional method that is not part of the abstract-level interface.

db.getProperty(property)

Get internal details from LevelDB. When issued with a valid property string, a string value is returned synchronously. Valid properties are:

  • leveldb.num-files-at-levelN: return the number of files at level N, where N is an integer representing a valid level (e.g. “0”).
  • leveldb.stats: returns a multi-line string describing statistics about LevelDB’s internal operation.
  • leveldb.sstables: returns a multi-line string describing all of the sstables that make up contents of the current database.

This method is an additional method that is not part of the abstract-level interface.

chainedBatch

chainedBatch.put(key, value[, options])

Queue a put operation on this batch, not committed until write() is called. This will throw a LEVEL_INVALID_KEY or LEVEL_INVALID_VALUE error if key or value is invalid. The optional options object may contain:

  • keyEncoding: custom key encoding for this operation, used to encode the key.
  • valueEncoding: custom value encoding for this operation, used to encode the value.
  • sublevel (sublevel instance): act as though the put operation is performed on the given sublevel, to similar effect as sublevel.batch().put(key, value). This allows atomically committing data to multiple sublevels. The key will be prefixed with the prefix of the sublevel, and the key and value will be encoded by the sublevel (using the default encodings of the sublevel unless keyEncoding and / or valueEncoding are provided).

chainedBatch.del(key[, options])

Queue a del operation on this batch, not committed until write() is called. This will throw a LEVEL_INVALID_KEY error if key is invalid. The optional options object may contain:

  • keyEncoding: custom key encoding for this operation, used to encode the key.
  • sublevel (sublevel instance): act as though the del operation is performed on the given sublevel, to similar effect as sublevel.batch().del(key). This allows atomically committing data to multiple sublevels. The key will be prefixed with the prefix of the sublevel, and the key will be encoded by the sublevel (using the default key encoding of the sublevel unless keyEncoding is provided).

chainedBatch.clear()

Clear all queued operations on this batch.

chainedBatch.write([options][, callback])

Commit the queued operations for this batch. All operations will be written atomically, that is, they will either all succeed or fail with no partial commits.

The optional options object may contain:

  • sync (boolean, default: false): same as described for db.put().

Note that write() does not take encoding options. Those can only be set on put() and del() because classic-level synchronously forwards such calls to LevelDB and thus need keys and values to be encoded at that point.

The callback function will be called with no arguments if the batch was successful or with an error if it failed. If no callback is provided, a promise is returned.

After write() or close() has been called, no further operations are allowed.

chainedBatch.close([callback])

Free up underlying resources. This should be done even if the chained batch has zero queued operations. Automatically called by write() so normally not necessary to call, unless the intent is to discard a chained batch without committing it. The callback function will be called with no arguments. If no callback is provided, a promise is returned. Closing the batch is an idempotent operation, such that calling close() more than once is allowed and makes no difference.

chainedBatch.length

The number of queued operations on the current batch.

chainedBatch.db

A reference to the database that created this chained batch.

iterator

An iterator allows one to lazily read a range of entries stored in the database. The entries will be sorted by keys in lexicographic order (in other words: byte order) which in short means key 'a' comes before 'b' and key '10' comes before '2'.

An iterator reads from a snapshot of the database, created at the time db.iterator() was called. This means the iterator will not see the data of simultaneous write operations.

Iterators can be consumed with for await...of and iterator.all(), or by manually calling iterator.next() or nextv() in succession. In the latter case, iterator.close() must always be called. In contrast, finishing, throwing, breaking or returning from a for await...of loop automatically calls iterator.close(), as does iterator.all().

An iterator reaches its natural end in the following situations:

  • The end of the database has been reached
  • The end of the range has been reached
  • The last iterator.seek() was out of range.

An iterator keeps track of calls that are in progress. It doesn’t allow concurrent next(), nextv() or all() calls (including a combination thereof) and will throw an error with code LEVEL_ITERATOR_BUSY if that happens:

// Not awaited and no callback provided
iterator.next()

try {
  // Which means next() is still in progress here
  iterator.all()
} catch (err) {
  console.log(err.code) // 'LEVEL_ITERATOR_BUSY'
}

for await...of iterator

Yields entries, which are arrays containing a key and value. The type of key and value depends on the options passed to db.iterator().

try {
  for await (const [key, value] of db.iterator()) {
    console.log(key)
  }
} catch (err) {
  console.error(err)
}

iterator.next([callback])

Advance to the next entry and yield that entry. If an error occurs, the callback function will be called with an error. Otherwise, the callback receives null, a key and a value. The type of key and value depends on the options passed to db.iterator(). If the iterator has reached its natural end, both key and value will be undefined.

If no callback is provided, a promise is returned for either an array (containing a key and value) or undefined if the iterator reached its natural end.

Note: iterator.close() must always be called once there’s no intention to call next() or nextv() again. Even if such calls yielded an error and even if the iterator reached its natural end. Not closing the iterator will result in memory leaks and may also affect performance of other operations if many iterators are unclosed and each is holding a snapshot of the database.

iterator.nextv(size[, options][, callback])

Advance repeatedly and get at most size amount of entries in a single call. Can be faster than repeated next() calls. The size argument must be an integer and has a soft minimum of 1. There are no options currently.

If an error occurs, the callback function will be called with an error. Otherwise, the callback receives null and an array of entries, where each entry is an array containing a key and value. The natural end of the iterator will be signaled by yielding an empty array. If no callback is provided, a promise is returned.

const iterator = db.iterator()

while (true) {
  const entries = await iterator.nextv(100)

  if (entries.length === 0) {
    break
  }

  for (const [key, value] of entries) {
    // ..
  }
}

await iterator.close()

iterator.all([options][, callback])

Advance repeatedly and get all (remaining) entries as an array, automatically closing the iterator. Assumes that those entries fit in memory. If that’s not the case, instead use next(), nextv() or for await...of. There are no options currently. If an error occurs, the callback function will be called with an error. Otherwise, the callback receives null and an array of entries, where each entry is an array containing a key and value. If no callback is provided, a promise is returned.

const entries = await db.iterator({ limit: 100 }).all()

for (const [key, value] of entries) {
  // ..
}

iterator.seek(target[, options])

Seek to the key closest to target. Subsequent calls to iterator.next(), nextv() or all() (including implicit calls in a for await...of loop) will yield entries with keys equal to or larger than target, or equal to or smaller than target if the reverse option passed to db.iterator() was true.

The optional options object may contain:

  • keyEncoding: custom key encoding, used to encode the target. By default the keyEncoding option of the iterator is used or (if that wasn’t set) the keyEncoding of the database.

If range options like gt were passed to db.iterator() and target does not fall within that range, the iterator will reach its natural end.

iterator.close([callback])

Free up underlying resources. The callback function will be called with no arguments. If no callback is provided, a promise is returned. Closing the iterator is an idempotent operation, such that calling close() more than once is allowed and makes no difference.

If a next() ,nextv() or all() call is in progress, closing will wait for that to finish. After close() has been called, further calls to next() ,nextv() or all() will yield an error with code LEVEL_ITERATOR_NOT_OPEN.

iterator.db

A reference to the database that created this iterator.

iterator.db

A reference to the database that created this iterator.

iterator.count

Read-only getter that indicates how many keys have been yielded so far (by any method) excluding calls that errored or yielded undefined.

iterator.limit

Read-only getter that reflects the limit that was set in options. Greater than or equal to zero. Equals Infinity if no limit, which allows for easy math:

const hasMore = iterator.count < iterator.limit
const remaining = iterator.limit - iterator.count

keyIterator

A key iterator has the same interface as iterator except that its methods yield keys instead of entries. For the keyIterator.next(callback) method, this means that the callback will receive two arguments (an error and key) instead of three. Usage is otherwise the same.

valueIterator

A value iterator has the same interface as iterator except that its methods yield values instead of entries. For the valueIterator.next(callback) method, this means that the callback will receive two arguments (an error and value) instead of three. Usage is otherwise the same.

sublevel

A sublevel is an instance of the AbstractSublevel class (as found in abstract-level) which extends AbstractLevel and thus has the same API as documented above, except for additional classic-level methods like db.approximateSize(). Sublevels have a few additional properties.

sublevel.prefix

Prefix of the sublevel. A read-only string property.

const example = db.sublevel('example')
const nested = example.sublevel('nested')

console.log(example.prefix) // '!example!'
console.log(nested.prefix) // '!example!!nested!'

sublevel.db

Parent database. A read-only property.

const example = db.sublevel('example')
const nested = example.sublevel('nested')

console.log(example.db === db) // true
console.log(nested.db === db) // true

ClassicLevel.destroy(location[, callback])

Completely remove an existing LevelDB database directory. You can use this method in place of a full directory removal if you want to be sure to only remove LevelDB-related files. If the directory only contains LevelDB files, the directory itself will be removed as well. If there are additional, non-LevelDB files in the directory, those files and the directory will be left alone.

The callback function will be called when the destroy operation is complete, with a possible error argument. If no callback is provided, a promise is returned. This method is an additional method that is not part of the abstract-level interface.

Before calling destroy(), close a database if it’s using the same location:

const db = new ClassicLevel('./db')
await db.close()
await ClassicLevel.destroy('./db')

ClassicLevel.repair(location[, callback])

Attempt a restoration of a damaged database. It can also be used to perform a compaction of the LevelDB log into table files. From LevelDB documentation:

If a DB cannot be opened, you may attempt to call this method to resurrect as much of the contents of the database as possible. Some data may be lost, so be careful when calling this function on a database that contains important information.

The callback function will be called when the repair operation is complete, with a possible error argument. If no callback is provided, a promise is returned. This method is an additional method that is not part of the abstract-level interface.

You will find information on the repair operation in the LOG file inside the database directory.

Before calling repair(), close a database if it’s using the same location.

Development

Getting Started

This repository uses git submodules. Clone it recursively:

git clone --recurse-submodules https://github.com/Level/classic-level.git

Alternatively, initialize submodules inside the working tree:

cd classic-level
git submodule update --init --recursive

Contributing

Level/classic-level is an OPEN Open Source Project. This means that:

Individuals making significant and valuable contributions are given commit-access to the project to contribute as they see fit. This project is more like an open wiki than a standard guarded open source project.

See the Contribution Guide for more details.

Publishing

  1. Increment the version: npm version ..
  2. Push to GitHub: git push --follow-tags
  3. Wait for CI to complete
  4. Download prebuilds into ./prebuilds: npm run download-prebuilds
  5. Optionally verify loading a prebuild: npm run test-prebuild
  6. Optionally verify which files npm will include: canadian-pub
  7. Finally: npm publish

Donate

Support us with a monthly donation on Open Collective and help us continue our work.

License

MIT

GitHub

View Github